domingo, 23 de septiembre de 2007

INFORME LABORATORIO 2

UNIVERSIDAD DE LA SALLE
CIENCIAS BÁSICAS
LABORATORIO DE QUÍMICA ORGÁNICA






MICRO-LAB No 2







1. TITULO

TECNICAS DE SEPARACIÓN CROMATOGRÁFICA EN QUÍMICA ORGANICA







ALUMNOS: JORGE ELIECER ROJAS 41071104
ANA MARÍA BARREIRO 41071050

GRUPO: 15
FACULTAD: INGENIERÍA AMBIENTAL Y SANITARÍA

FECHA: AGOSTO 22 DEL 2007
2. BIBLIOGRAFÍA:


2. INTRODUCCIÓN

La destilación constituye el método más frecuente e importante para la purificación de líquidos. Se utiliza siempre en la separación de un líquido de sus impurezas no volátiles y, cuando ello es posible, en la separación de dos o más líquidos.
Cuando un líquido puro se introduce en un recipiente cerrado y vacío parte del mismo se evapora hasta que el vapor alcanza una determinada presión, que depende solamente de la temperatura. La temperatura a la que esto ocurre recibe el nombre de punto de ebullición normal del líquido en cuestión, y es una constante característica para cada líquido.
Cuando se calienta una solución o una mezcla de dos o más líquidos, el punto de ebullición normal es entonces la temperatura a la cual la tensión del vapor total de la mezcla es igual a la presión atmosférica (760mm). La tensión de vapor total de una mezcla es igual a la suma de las presiones de vapor parciales de cada componente. Siempre que se tenga una mezcla de dos o más componentes que se diferencien suficientemente en sus puntos de ebullición, se podrá separar en sus componentes por destilación. Se pueden distinguir tres tipos principales de destilación: Destilación sencilla, destilación fraccionada y destilación al vacío.
Destilación simple: Es una técnica utilizada en la purificación de líquidos cuyo punto de ebullición menor de 150° C a la presión atmosférica y sirve para eliminar impurezas no volátiles. Esta técnica también se emplea para separar dos líquidos cuyos puntos de ebullición difieran al menos en 25° C
Destilación Fraccionada: Es una técnica que se emplea en la separación de sustancias cuyos puntos de ebullición difieran entre si menos de 25° C. La diferencia respecto a la destilación simple es la presencia de una columna de fraccionamiento entre el matraz y la cabeza de destilación.

3. OBJETIVOS

- El objetivo de esta práctica es determinar la composición aproximada de una mezcla de líquidos totalmente miscibles, a partir de los datos de punto de ebullición, composición azeotrópica y los resultados obtenidos de la destilación fraccionada de la muestra.
- Se compararán los datos obtenidos por destilación fraccionada con los obtenidos por destilación simple de una muestra de la misma composición.

4. MATERIAL-EQUIPOS-REACTIVOS

SEGURIDAD EN EL LABORATORIO
-Usar bata de color blanco en el laboratorio.
-Usar en todo momento gafas de seguridad.
-Usar guantes desechables de nitrilo.
-El uso del teléfono celular, beber y comer queda totalmente prohibido durante las prácticas.
-Si hay salpicaduras en los ojos. Lavar inmediata e insistentemente en un lavador de ojos o con un chorro de agua.

MATERIAL EQUIPOS

Destilación simple:
MATERIAL
REACTIVOS



Soporte Universal
Agua (H2O)
Pinza
Muestra indicada del profesor
Nuez
Perlas de vidrio
Termometro

Matraz de fondo redondo con desprendimiento

lateral

Refrigerante

Placa Calefactora

Alargadera

Recipiente Recolector




Destilación Fraccionada

MATERIAL
REACTIVOS

SOPORTES UNIVERSALES
H2O AGUA
PLACA REFRACTORIA
60 ml mezcla indicada por el profesor
TERMÓMETRO
3 perlas de vidrio
PINZAS CON NUEZ

PERLAS DE VIDRIO

BALÓN FONDO REDONDO

REFRIGERANTES

COLUMNA FRACCIONAMIENTO




5. PROCEDIMIENTO

Separación de una mezcla solvente-agua en sus dos componentes

Monte el aparato de destilación sencilla utilizando un matraz de fondo redondo de 100 ml. Ponga en el matraz 30 ml. De cualquier muestra que le indique el profesor 30 ml de agua y dos o tres perlas de vidrio. Haga circular una corriente suave de agua del grifo por el refrigerante, uniendo la entrada de este al grifo mediante una manguera de goma. El agua que sale del refrigerante por su parte superior se conducirá a un desagüe mediante otra manguera de goma. Etiquete y numere tres erlenmeyer pequeños para recoger las fracciones.
Caliente el matraz de forma que el destilado se recoja de una manera continua a una velocidad aproximada de una gota por segundo. Cambie los erlenmeyer colectores con rapidez a los intervalos de temperatura indicados según la literatura. Cuando la temperatura alcance 95° C interrumpa la destilación y enfríe el matraz de destilación dejando que gotee en él, el condesado del cuello.
Mida con una probeta graduada los volúmenes de destilado obtenido en cada fracción para las respectivas muestras indicadas por su profesor así como el del residuo del matraz. Anote los volúmenes obtenidos. Mediante la destilación sencilla que se acaba de describir se pueden separar mezclas de dos componentes que hiervan con una diferencia de puntos de ebullición de al menos 60-80° C. Mezclas de sustancias cuyos puntos de ebullición difieren de 30-60° C se pueden separar por destilaciones sencillas repetidas, recogiendo durante la primera destilación fracciones enriquecidas en uno de los componentes, las cuales se vuelven a destilar.

Deje que el matraz de destilación vacío se enfríe y ponga en el contenido del earlenmeyer 2 y vuelva a montar el aparato de destilación. Añada dos o tres trocitos porosos nuevos y destile de nuevo, añadiendo la fracción que destile en el intervalo descrito por la literatura y para cada solvente seleccionado por usted con su maestro al recipiente 1 y recogiendo de nuevo en el earlenmeyer 2 la que destile al intervalo seleccionado anteriormente.

Una vez que el matraz de destilación se haya enfriado algo, vierta el residuo que quede en él matraz 3. Mida de nuevo y anote el volumen total de cada fracción. Apunte todos sus datos en el informe.

Destilación Fraccionada

Monte el aparato de la figura de destilación fraccionada con un matraz de fondo redondo de 250ml. Ponga 60ml de mezcla de las soluciones que le haya indicado el profesor y 60ml de agua. Añada 2 o 3 perlas de vidrio y proceda a destilar como en la sección anterior, con la única salvedad de no repetir el proceso, es decir, efectuarlo una sola vez.

6. MARCO TEÓRICO

LA DESTILACIÓN
La destilación es un proceso que consiste en calentar una sustancia, normalmente un líquido, para que sus componentes más volátiles pasen a estado gaseoso o de vapor y a continuación volver esos componentes al estado líquido mediante condensación por enfriamiento.
La meta principal de la destilación es separar los distintos componentes de una mezcla aprovechando para ello sus distintos grados de volatilidad. Otra función de la destilación es separar los elementos volátiles de los no volátiles de una mezcla.
En otros sistemas similares como la evaporación y en el secado, normalmente el objetivo es obtener el componente menos volátil; el componente más volátil, casi siempre agua, se desecha. Sin embargo, la finalidad principal de la destilación es obtener el componente más volátil en forma pura. Por ejemplo, la eliminación del agua de la glicerina evaporando el agua, se llama evaporación, pero la eliminación del agua del alcohol evaporando el alcohol se llama destilación, aunque se usan mecanismos similares en ambos casos.
Si la diferencia entre las temperaturas de ebullición o volatilidad de fod sustancias es grande, se puede realizar fácilmente la separación completa en una sola destilación. Es el caso de la obtención de agua destilada a partir de agua marina. Esta contiene aproximadamente el 4% de distintas materias sólidas en disolución.
En ocasiones, los puntos de ebullición de todos o algunos de los componentes de una mezcla difieren en poco por lo que no es posible obtener la separación completa en una sola destilación por lo que se suelen realizar dos o más. Así el ejemplo del alcohol etílico y el agua. El primero tiene un punto de ebullición de 78,5 °C y el agua de 100 °C por lo que al hervir esta mezcla se producen unos vapores con ambas sustancias aunque diferentes concentraciones y más ricos en alcohol. Para conseguir alcohol industrial o vodka es preciso realizar varias destilaciones.
TIPOS DE DESTILACIÓN
Destilación fraccionada
La destilación fraccionada es un proceso de destilación de mezclas muy complejas y con componentes de similar volatilidad. Consiste en que una parte del destilado vuelve del condensador y gotea por una larga columna a una serie de placas, y que al mismo tiempo el vapor que se dirige al condensador hace burbujear al líquido de esas placas. De esta forma, el vapor y el líquido interaccionan de forma que parte del agua del vapor se condensa y parte del alcohol del líquido se evapora. Así pues, la interacción en cada placa es equivalente a una redestilación, y si se construye una columna con el suficiente número de placas, se puede obtener un producto destilado del altísima pureza, como el alcohol de 96%; en una única destilación. Además, introduciendo gradualmente la disolución original de baja concentración del componente a destilar en un punto en mitad de la columna, se podrá separar prácticamente todo este componente del disolvente mientras desciende hasta la placa inferior, de forma que no se desperdicie nada del componente a destilar.
Este proceso se utiliza mucho en la industria, no sólo para mezclas simples de dos componentes, como alcohol y agua en los productos de fermentación, u oxígeno y nitrógeno en el aire líquido, sino también para mezclas más complejas como las que se encuentran en el alquitrán de hulla y en el petróleo. La columna fraccionadora que se usa con más frecuencia es la llamada torre de burbujeo, en la que las placas están dispuestas horizontalmente, separadas unos centímetros, y los vapores ascendentes suben por unas cápsulas de burbujeo a cada placa, donde burbujean a través del líquido. Las placas están escalonadas de forma que el líquido fluye de izquierda a derecha en una placa, luego cae a la placa de abajo y allí fluye de derecha a izquierda. La interacción entre el líquido y el vapor puede ser incompleta debido a que puede producirse espuma y arrastre de forma que parte del líquido sea transportado por el vapor a la placa superior. En este caso, pueden ser necesarias cinco placas para hacer el trabajo de cuatro placas teóricas, que realizan cuatro destilaciones. Un equivalente barato de la torre de burbujeo es la llamada columna apilada, en la que el líquido fluye hacia abajo sobre una pila de anillos de barro o trocitos de tuberías de vidrio.
La única desventaja de la destilación fraccionada es que una gran parte, aproximadamente el 50%, del destilado condensado debe volver a la parte superior de la torre y eventualmente debe hervirse otra vez, con lo cual hay que suministrar más energía en forma de calor. Por otra parte, el funcionamiento continuo permite grandes ahorros de calor, porque el destilado que sale puede ser utilizado para precalentar la mezcla que entra.
Cuando la mezcla está formada por varios componentes, estos se extraen en distintos puntos a lo largo de la torre. Las torres de destilación industrial para petróleo tienen a menudo 100 placas, con al menos diez fracciones diferentes que son extraídas en los puntos adecuados. Se han utilizado torres de más de 500 placas para separar isótopos por destilación.

Destilación por vapor
Si dos líquidos insolubles se calientan, ninguno de los dos es afectado por la presencia del otro (mientras se les remueva para que el líquido más ligero no forme una capa impenetrable sobre el más pesado) y se evaporan en un grado determinado solamente por su propia volatilidad. Por lo tanto, dicha mezcla siempre hierve a una temperatura menor que la de cada componente por separado. El porcentaje de cada componente en el vapor sólo depende de su presión de vapor a esa temperatura. Este principio puede aplicarse a sustancias que podrían verse perjudicadas por el exceso de calor si fueran destiladas en la forma habitual.
Destilación al vacío
Otro método para destilar sustancias a temperaturas por debajo de su punto normal de ebullición es evacuar parcialmente el alambique. Por ejemplo, la anilina puede ser destilada a 100 °C extrayendo el 93% del aire del alambique. Este método es tan efectivo como la destilación por vapor, pero más caro. Cuanto mayor es el grado de vacío, menor es la temperatura de destilación. Si la destilación se efectúa en un vacío prácticamente perfecto, el proceso se llama destilación molecular. Este proceso se usa normalmente en la industria para purificar vitaminas y otros productos inestables. Se coloca la sustancia en una placa dentro de un espacio evacuado y se calienta. El condensador es una placa fría, colocada tan cerca de la primera como sea posible. La mayoría del material pasa por el espacio entre las dos placas, y por lo tanto se pierde muy poco.
Destilación molecular centrífuga
Si una columna larga que contiene una mezcla de gases se cierra herméticamente y se coloca en posición vertical, se produce una separación parcial de los gases como resultado de la gravedad. En una centrifugadora de alta velocidad, o en un instrumento llamado vórtice, las fuerzas que separan los componentes más ligeros de los más pesados son miles de veces mayores que las de la gravedad, haciendo la separación más eficaz. Por ejemplo, la separación del hexafluoruro de uranio gaseoso, UF6, en moléculas que contienen dos isótopos diferentes del uranio, uranio 235 y uranio 238, puede ser llevada a cabo por medio de la destilación molecular centrífuga.
Sublimación
Si se destila una sustancia sólida, pasándola directamente a la fase de vapor y otra vez a la fase sólida sin que se forme un líquido en ningún momento, el proceso se llama sublimación. La sublimación no difiere de la destilación en ningún aspecto importante, excepto en el cuidado especial que se requiere para impedir que el sólido obstruya el aparato utilizado. La rectificación de dichos materiales es imposible. El yodo se purifica por sublimación.
Destilación destructiva
Cuando se calienta una sustancia a una temperatura elevada, descomponiéndose en varios productos valiosos, y esos productos se separan por fraccionamiento en la misma operación, el proceso se llama destilación destructiva. Las aplicaciones más importantes de este proceso son la destilación destructiva del carbón para el coque, el alquitrán, el gas y el amoníaco, y la destilación destructiva de la madera para el carbón de leña, el ácido etanoico, la propanona y el metanol. Este último proceso ha sido ampliamente desplazado por procedimientos sintéticos para fabricar distintos subproductos. El craqueo del petróleo es similar a la destilación destructiva.
CALCULOS Y RESULTADOS
Se utilizo en el laboratorio el equipo que nosotros armamos para realizar el proceso de destilación simple. En el, la sustancia mezclada se iba separando debido a los puntos de ebullición de las diferentes sustancias, que posteriormente fueron condensadas gracias al refrigerador, obteniendo las sustancias diferentes en distintos beakers.


Tabla de datos
SUSTANCIA
PUNTO DE EBULLICIÓN


PRIMERA
50°C
SEGUNDA
75°C
TERCERA
90°C


Gráfico s









Observaciones
-Por un extremo de la manguera que suministraba agua al refrigerante, nos toco reforzarlo con un cordón, ya que había un pequeño flujo de aire.
-Nos toco bajar la temperatura en otras ocasiones por el motivo de que la sustancia no se habia terminado de destilar, y ya la temperatura estaba aumentando de nuevo.

Causas de error
- El defectuoso suministro de agua al refrigerante, lo que ocasionaba un flujo que había en la manguera de suministro de agua.
- No esperar a que la destilación de la primera sustancia con punto de ebullición más bajo, destilara por completo.
- No utilizar perlas de vidrio.
- Utilizar la placa de calentamiento muy retirada del flujo de energía.
CUESTIONARIO
1. ¿Qué es una mezcla azeotrópica y que aplicaciones puede tener la formación de la misma?
Es una mezcla que no se puede separar por proceso de destilación.
2. ¿Cómo distinguiría una mezcla azeotrópica de una sustancia pura?
Que por sus componentes, no se puede separar por destilación.
3. Conteste y justifique brevemente:
¿para que sirve la piedra porosa en la destilación?¿Puede reemplazarla por otro elemento?
La piedra porosa es un mecanismo muy utilizado para la filtración de compuestos. Se pueden utilizar otros filtradores que tienen compuestos orgánicos que atrapan microorganismos.
4. ¿Qué precauciones son necesarias cuando se destilan líquidos inflamables? Enumere algunos solventes inflamables.
-A la hora de que este sea sometido a temperaturas altas, se lleve a cabo no con un mechero que deje salir gas metano, si no con un calentador eléctrico. Por el motivo de evitar la combustión.

Algunos solventes inflamables son:
§ Bases y ácidos fuertes
§ Desperdicios combustibles
§ Éter etílico
5. a) Enuncie la ley de Raoult. Defina sistema ideal y no ideal de líquidos miscibles. ¿Cuál es el caso general de desviación de la ley de Raoult observado en mezclas líquidas orgánicas?
Ley de Raoult “La presión de vapor de un componente de una mezcla es proporcional a la concentración de dicho componente y a la presión de vapor del componente puro”
El sistema ideal y no ideal de un liquido miscible respecto a otra sustancia, es sencillamente que el solvente sea totalmente disuelto y no parcialmente. Que quiere decir esto, que sus fuerzas intermoleculares sean tan fuertes, que el liquido sea totalmente disuelto. Un ejemplo es el alcohol y el agua.
DESVIACIONES LEY DE RAOULT
Desviación Positiva
A-B < A-A ó B-B
Desviación Negativa
A-B > A-A ó B-B




BIBLIOGRAFÍA
- www.ffyb.uba.ar/qcagral/PPS/09-Soluciones
- www.qo.fcen.uba.ar/Cursos/biolb
- www.fq.uh.cu/dpto/qf/uclv/infoLab/practics/practicas/Destilacionfraccionada/teoria
- www.fcen.uba.ar/shys/pdf/descarte_solventes
- www.cosmos.com.mx/e/dbhs
- es.wikipedia.org/wiki/Destilación
- www.monografias.com/trabajos15/separacion-mezclas/separacion-mezclas
- www.bedri.es/Comer_y_beber/Licores_caseros/La_destilacion